Перевод: с английского на все языки

со всех языков на английский

The Electric Telegraph

  • 1 Cooke, William Fothergill

    SUBJECT AREA: Telecommunications
    [br]
    b. 1806 Baling, London, England
    d. 25 June 1879 Farnham, Surrey, England
    [br]
    English physicist, pioneer of electric telegraphy.
    [br]
    The son of a surgeon who became Professor of Anatomy at Durham University, Cooke received a conventional classical education, with no science, in Durham and at Edinburgh University. He joined the East India Company's aimy in Madras, but resigned because of ill health in 1833. While convalescent, Cooke travelled in Europe and began making wax models of anatomical sections, possibly as teaching aids for his father. In Germany he saw an experimental electric-telegraph demonstration, and was so impressed with the idea of instantaneous long-distance communication that he dropped the modelling and decided to devote all his energies to developing a practical electric telegraph. His own instruments were not successful: they worked across a room, but not over a mile of wire. His search for scientific advice led him to Charles Wheatstone, who was working on a similar project, and together they obtained a patent for the first practical electric telegraph. Cooke's business drive and Wheatstone's scientific abilities should have made a perfect partnership, but the two men quarrelled and separated. Cooke's energy and enthusiasm got the telegraph established, first on the newly developing railways, then independently. Sadly, the fortune he made from the telegraph was lost in other ventures, and he died a poor man.
    [br]
    Further Reading
    G.Hubbard, 1965, Cooke and Wheatstone and the Invention of the Electric Telegraph, London, Routledge \& Kegan Paul (provides a short account of Cooke's life; there is no full biography).
    BB

    Biographical history of technology > Cooke, William Fothergill

  • 2 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 3 Gooch, Sir Daniel

    [br]
    b. 24 August 1816 Bedlington, Northumberland, England
    d. 15 October 1889 Clewer Park, Berkshire, England
    [br]
    English engineer, first locomotive superintendent of the Great Western Railway and pioneer of transatlantic electric telegraphy.
    [br]
    Gooch gained experience as a pupil with several successive engineering firms, including Vulcan Foundry and Robert Stephenson \& Co. In 1837 he was engaged by I.K. Brunel, who was then building the Great Western Railway (GWR) to the broad gauge of 7 ft 1/4 in. (2.14 m), to take charge of the railway's locomotive department. He was just 21 years old. The initial locomotive stock comprised several locomotives built to such extreme specifications laid down by Brunel that they were virtually unworkable, and two 2–2–2 locomotives, North Star and Morning Star, which had been built by Robert Stephenson \& Co. but left on the builder's hands. These latter were reliable and were perpetuated. An enlarged version, the "Fire Fly" class, was designed by Gooch and built in quantity: Gooch was an early proponent of standardization. His highly successful 4–2–2 Iron Duke of 1847 became the prototype of GWR express locomotives for the next forty-five years, until the railway's last broad-gauge sections were narrowed. Meanwhile Gooch had been largely responsible for establishing Swindon Works, opened in 1843. In 1862 he designed 2–4–0 condensing tank locomotives to work the first urban underground railway, the Metropolitan Railway in London. Gooch retired in 1864 but was then instrumental in arranging for Brunel's immense steamship Great Eastern to be used to lay the first transatlantic electric telegraph cable: he was on board when the cable was successfully laid in 1866. He had been elected Member of Parliament for Cricklade (which constituency included Swindon) in 1865, and the same year he had accepted an invitation to become Chairman of the Great Western Railway Company, which was in financial difficulties; he rescued it from near bankruptcy and remained Chairman until shortly before his death. The greatest engineering work undertaken during his chairmanship was the boring of the Severn Tunnel.
    [br]
    Principal Honours and Distinctions
    Knighted 1866 (on completion of transatlantic telegraph).
    Bibliography
    1972, Sir Daniel Gooch, Memoirs and Diary, ed. R.B.Wilson, with introd. and notes, Newton Abbot: David \& Charles.
    Further Reading
    A.Platt, 1987, The Life and Times of Daniel Gooch, Gloucester: Alan Sutton (puts Gooch's career into context).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan (contains a good short biography).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, pp. 112–5.
    PJGR

    Biographical history of technology > Gooch, Sir Daniel

  • 4 Tyer, Edward

    [br]
    b. 6 February 1830 Kennington, London, England
    d. 25 December 1912 Tunbridge Wells, England
    [br]
    English railway signal engineer, inventor of electric train-tablet system for the operation of single-line railways.
    [br]
    Use of the electric telegraph for the safe operation of railways was first proposed by W.F. Cooke in the late 1830s, but its application to this purpose and the concurrent replacement of the time-interval system of working, by the block system, comprised a matter of gradual evolution over several decades. In 1851 Tyer established a business making electrical apparatus for railways, and the block instruments invented by him in 1855 were an important step forward. A simple code of electric-bell rings (for up trains; for down trains, there was a distinctive gong) was used by one signalman to indicate to another in advance that a train was entering the section between them, and the latter signalman then operated a galvanometer telegraph instrument in the box of the former to indicate "train on line", holding it so until the train arrived.
    Even more important was the electric train-tablet apparatus. During the 1870s, single-line railways were operated either by telegraphed train orders, misuse of which led to two disastrous head-on collisions, or by "train staff and ticket", which lacked flexibility since no train could enter one end of a section while the train staff was at the other. At the request of Currer, an official of the Caledonian Railway, Tyer designed and produced his apparatus, in which a supply of discs, or "tablets", was contained in two instruments, one located at each end of a section, and linked electrically: only one tablet at a time could be extracted from the instruments, serving as an authority for a train to enter the section from one end or the other.
    [br]
    Bibliography
    1855, British patent no. 2,895 (block instruments). 1861, British patent no. 3,015 (block instruments). 1878, British patent for electric train-tablet apparatus.
    Further Reading
    C.Hamilton Ellis, 1959, British Railway History, Vol. II: 1877–1947, London: George Allen \& Unwin, p. 199 (describes the development of the tablet apparatus).
    P.J.G.Ransom, 1990, The Victorian Railway and How It Evolved, London: Heinemann, pp. 157–8 and 164 (describes the block instruments and tablet apparatus).
    PJGR

    Biographical history of technology > Tyer, Edward

  • 5 Crampton, Thomas Russell

    [br]
    b. 6 August 1816 Broadstairs, Kent, England
    d. 19 April 1888 London, England
    [br]
    English engineer, pioneer of submarine electric telegraphy and inventor of the Crampton locomotive.
    [br]
    After private education and an engineering apprenticeship, Crampton worked under Marc Brunel, Daniel Gooch and the Rennie brothers before setting up as a civil engineer in 1848. His developing ideas on locomotive design were expressed through a series of five patents taken out between 1842 and 1849, each making a multiplicity of claims. The most typical feature of the Crampton locomotive, however, was a single pair of driving wheels set to the rear of the firebox. This meant they could be of large diameter, while the centre of gravity of the locomotive remained low, for the boiler barrel, though large, had only small carrying-wheels beneath it. The cylinders were approximately midway along the boiler and were outside the frames, as was the valve gear. The result was a steady-riding locomotive which neither pitched about a central driving axle nor hunted from side to side, as did other contemporary locomotives, and its working parts were unusually accessible for maintenance. However, adhesive weight was limited and the long wheelbase tended to damage track. Locomotives of this type were soon superseded on British railways, although they lasted much longer in Germany and France. Locomotives built to the later patents incorporated a long, coupled wheelbase with drive through an intermediate crankshaft, but they mostly had only short lives. In 1851 Crampton, with associates, laid the first successful submarine electric telegraph cable. The previous year the brothers Jacob and John Brett had laid a cable, comprising a copper wire insulated with gutta-percha, beneath the English Channel from Dover to Cap Gris Nez: signals were passed but within a few hours the cable failed. Crampton joined the Bretts' company, put up half the capital needed for another attempt, and designed a much stronger cable. Four gutta-percha-insulated copper wires were twisted together, surrounded by tarred hemp and armoured by galvanized iron wires; this cable was successful.
    Crampton was also active in railway civil engineering and in water and gas engineering, and c. 1882 he invented a hydraulic tunnel-boring machine intended for a Channel tunnel.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Mechanical Engineers. Officier de la Légion d'Honneur (France).
    Bibliography
    1842, British patent no. 9,261.
    1845. British patent no. 10,854.
    1846. British patent no. 11,349.
    1847. British patent no. 11,760.
    1849, British patent no. 12,627.
    1885, British patent no. 14,021.
    Further Reading
    M.Sharman, 1933, The Crampton Locomotive, Swindon: M.Sharman; P.C.Dewhurst, 1956–7, "The Crampton locomotive", Parts I and II, Transactions of the Newcomen Society 30:99 (the most important recent publications on Crampton's locomotives).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allen. J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, 102–4.
    R.B.Matkin, 1979, "Thomas Crampton: Man of Kent", Industrial Past 6 (2).
    PJGR

    Biographical history of technology > Crampton, Thomas Russell

  • 6 Vail, Alfred Lewis

    SUBJECT AREA: Telecommunications
    [br]
    b. 25 September 1807 Morristown, New Jersey, USA
    d. 18 January 1859 Morristown, New Jersey, USA
    [br]
    American telegraph pioneer and associate of Samuel Morse; widely credited with the invention of "Morse" code.
    [br]
    After leaving school, Vail was initially employed at his father's ironworks in Morristown, but he then decided to train for the Presbyterian ministry, graduating from New York City University in 1836. Unfortunately, he was then obliged to abandon his chosen career because of ill health. He accidentally met Samuel Morse not long afterwards, and he became interested in the latter's telegraph experiments; in return for a share of the rights, he agreed to construct apparatus and finance the filing of US and foreign patents. Working in Morristown with Morse and Leonard Gale, and with financial backing from his father, Vail constructed around his father's plant a telegraph with 3 miles (4.8 km) of wire. It is also possible that he, rather than Morse, was largely responsible for devising the so-called Morse code, a series of dot and dash codes representing the letters of the alphabet, and in which the simplest codes were chosen for those letters found to be most numerous in a case of printer's type. This system was first demonstrated on 6 January 1838 and there were subsequent public demonstrations in New York and Philadelphia. Eventually Congress authorized an above-ground line between Washington and Baltimore, and on 24 May 1844 the epoch-making message "What hath God wrought?" was transmitted.
    Vail remained with Morse for a further four years, but he gradually lost interest in telegraphy and resigned, receiving no credit for his important contribution.
    [br]
    Bibliography
    The Magnetic Telegraph.
    Further Reading
    J.J.Fahie, 1884, A History of the Electric Telegraph to the Year 1837, London: E\&F Spon.
    KF

    Biographical history of technology > Vail, Alfred Lewis

  • 7 Chappe, Claude

    SUBJECT AREA: Telecommunications
    [br]
    b. 25 December 1763 Brulon, France
    d. 23 January 1805 Paris, France
    [br]
    French engineer who invented the semaphore visual telegraph.
    [br]
    Chappe began his studies at the Collège de Joyeuse, Rouen, and completed them at La Flèche. He was educated for the church with the intention of becoming an Abbé Commendataire, but this title did not in fact require him to perform any religious duties. He became interested in natural science and amongst other activities he carried out experiments with electrically charged soap bubbles.
    When the bénéfice was suppressed in 1781 he returned home and began to devise a system of telegraphic communication. With the help of his three brothers, particularly Abraham, and using an old idea, in 1790 he made a visual telegraph with suspended pendulums to relay coded messages over a distance of half a kilometre. Despite public suspicion and opposition, he presented the idea to the Assemblée Nationale on 22 May 1792. No doubt due to the influence of his brother, Ignace, a member of the Assemblée Nationale, the idea was favourably received, and on 1 April 1793 it was referred to the National Convention as being of military importance. As a result, Chappe was given the title of Telegraphy Engineer and commissioned to construct a semaphore (Gk. bearing a sign) link between Paris and Lille, a distance of some 240 km (150 miles), using twenty-two towers. Each station contained two telescopes for observing the adjacent towers, and each semaphore consisted of a central beam supporting two arms, whose positions gave nearly two hundred possible arrangements. Hence, by using a code book as a form of lookup table, Chappe was able to devise a code of over 8,000 words. The success of the system for communication during subsequent military conflicts resulted in him being commissioned to extend it with further links, a work that was continued by his brothers after his suicide during a period of illness and depression. Providing as it did an effective message speed of several thousand kilometres per hour, the system remained in use until the mid-nineteenth century, by which time the electric telegraph had become well established.
    [br]
    Further Reading
    R.Appleyard, 1930, Pioneers of Electrical Communication.
    International Telecommunications Union, 1965, From Semaphore to Satellite, Geneva.
    KF

    Biographical history of technology > Chappe, Claude

  • 8 Siemens, Dr Ernst Werner von

    [br]
    b. 13 December 1816 Lenthe, near Hanover, Germany
    d. 6 December 1892 Berlin, Germany
    [br]
    German pioneer of the dynamo, builder of the first electric railway.
    [br]
    Werner von Siemens was the eldest of a large family and after the early death of his parents took his place at its head. He served in the Prussian artillery, being commissioned in 1839, after which he devoted himself to the study of chemistry and physics. In 1847 Siemens and J.G. Halske formed a company, Telegraphen-Bauanstalt von Siemens und Halske, to manufacture a dial telegraph which they had developed from an earlier instrument produced by Charles Wheatstone. In 1848 Siemens obtained his discharge from the army and he and Halske constructed the first long-distance telegraph line on the European continent, between Berlin and Frankfurt am Main.
    Werner von Siemens's younger brother, William Siemens, had settled in Britain in 1844 and was appointed agent for the Siemens \& Halske company in 1851. Later, an English subsidiary company was formed, known from 1865 as Siemens Brothers. It specialized in manufacturing and laying submarine telegraph cables: the specialist cable-laying ship Faraday, launched for the purpose in 1874, was the prototype of later cable ships and in 1874–5 laid the first cable to run direct from the British Isles to the USA. In charge of Siemens Brothers was another brother, Carl, who had earlier established a telegraph network in Russia.
    In 1866 Werner von Siemens demonstrated the principle of the dynamo in Germany, but it took until 1878 to develop dynamos and electric motors to the point at which they could be produced commercially. The following year, 1879, Werner von Siemens built the first electric railway, and operated it at the Berlin Trades Exhibition. It comprised an oval line, 300 m (985 it) long, with a track gauge of 1 m (3 ft 3 1/2 in.); upon this a small locomotive hauled three small passenger coaches. The locomotive drew current at 150 volts from a third rail between the running rails, through which it was returned. In four months, more than 80,000 passengers were carried. The railway was subsequently demonstrated in Brussels, and in London, in 1881. That same year Siemens built a permanent electric tramway, 1 1/2 miles (2 1/2 km) long, on the outskirts of Berlin. In 1882 in Berlin he tried out a railless electric vehicle which drew electricity from a two-wire overhead line: this was the ancestor of the trolleybus.
    In the British Isles, an Act of Parliament was obtained in 1880 for the Giant's Causeway Railway in Ireland with powers to work it by "animal, mechanical or electrical power"; although Siemens Brothers were electrical engineers to the company, of which William Siemens was a director, delays in construction were to mean that the first railway in the British Isles to operate regular services by electricity was that of Magnus Volk.
    [br]
    Principal Honours and Distinctions
    Honorary doctorate, Berlin University 1860. Ennobled by Kaiser Friedrich III 1880, after which he became known as von Siemens.
    Further Reading
    S.von Weiher, 1972, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45 (describes the Siemens's careers). C.E.Lee, 1979, The birth of electric traction', Railway Magazine (May) (describes Werner Siemens's introduction of the electric railway).
    Transactions of the Newcomen Society (1979) 50: 82–3 (describes Siemens's and Halske's early electric telegraph instruments).
    Transactions of the Newcomen Society (1961) 33: 93 (describes the railless electric vehicle).
    PJGR

    Biographical history of technology > Siemens, Dr Ernst Werner von

  • 9 Preece, Sir William Henry

    [br]
    b. 15 February 1834 Bryn Helen, Gwynedd, Wales
    d. 6 November 1913 Penrhos, Gwynedd, Wales
    [br]
    Welsh electrical engineer who greatly furthered the development and use of wireless telegraphy and the telephone in Britain, dominating British Post Office engineering during the last two decades of the nineteenth century.
    [br]
    After education at King's College, London, in 1852 Preece entered the office of Edwin Clark with the intention of becoming a civil engineer, but graduate studies at the Royal Institution under Faraday fired his enthusiasm for things electrical. His earliest work, as connected with telegraphy and in particular its application for securing the safe working of railways; in 1853 he obtained an appointment with the Electric and National Telegraph Company. In 1856 he became Superintendent of that company's southern district, but four years later he moved to telegraph work with the London and South West Railway. From 1858 to 1862 he was also Engineer to the Channel Islands Telegraph Company. When the various telegraph companies in Britain were transferred to the State in 1870, Preece became a Divisional Engineer in the General Post Office (GPO). Promotion followed in 1877, when he was appointed Chief Electrician to the Post Office. One of the first specimens of Bell's telephone was brought to England by Preece and exhibited at the British Association meeting in 1877. From 1892 to 1899 he served as Engineer-in-Chief to the Post Office. During this time he made a number of important contributions to telegraphy, including the use of water as part of telegraph circuits across the Solent (1882) and the Bristol Channel (1888). He also discovered the existence of inductive effects between parallel wires, and with Fleming showed that a current (thermionic) flowed between the hot filament and a cold conductor in an incandescent lamp.
    Preece was distinguished by his administrative ability, some scientific insight, considerable engineering intuition and immense energy. He held erroneous views about telephone transmission and, not accepting the work of Oliver Heaviside, made many errors when planning trunk circuits. Prior to the successful use of Hertzian waves for wireless communication Preece carried out experiments, often on a large scale, in attempts at wireless communication by inductive methods. These became of historic interest only when the work of Maxwell and Hertz was developed by Guglielmo Marconi. It is to Preece that credit should be given for encouraging Marconi in 1896 and collaborating with him in his early experimental work on radio telegraphy.
    While still employed by the Post Office, Preece contributed to the development of numerous early public electricity schemes, acting as Consultant and often supervising their construction. At Worcester he was responsible for Britain's largest nineteenth-century public hydro-electric station. He received a knighthood on his retirement in 1899, after which he continued his consulting practice in association with his two sons and Major Philip Cardew. Preece contributed some 136 papers and printed lectures to scientific journals, ninety-nine during the period 1877 to 1894.
    [br]
    Principal Honours and Distinctions
    CB 1894. Knighted (KCB) 1899. FRS 1881. President, Society of Telegraph Engineers, 1880. President, Institution of Electrical Engineers 1880, 1893. President, Institution of Civil Engineers 1898–9. Chairman, Royal Society of Arts 1901–2.
    Bibliography
    Preece produced numerous papers on telegraphy and telephony that were presented as Royal Institution Lectures (see Royal Institution Library of Science, 1974) or as British Association reports.
    1862–3, "Railway telegraphs and the application of electricity to the signaling and working of trains", Proceedings of the ICE 22:167–93.
    Eleven editions of Telegraphy (with J.Sivewright), London, 1870, were published by 1895.
    1883, "Molecular radiation in incandescent lamps", Proceedings of the Physical Society 5: 283.
    1885. "Molecular shadows in incandescent lamps". Proceedings of the Physical Society 7: 178.
    1886. "Electric induction between wires and wires", British Association Report. 1889, with J.Maier, The Telephone.
    1894, "Electric signalling without wires", RSA Journal.
    Further Reading
    J.J.Fahie, 1899, History of Wireless Telegraphy 1838–1899, Edinburgh: Blackwood. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    E.C.Baker, 1976, Sir William Preece, F.R.S. Victorian Engineer Extraordinary, London (a detailed biography with an appended list of his patents, principal lectures and publications).
    D.G.Tucker, 1981–2, "Sir William Preece (1834–1913)", Transactions of the Newcomen Society 53:119–36 (a critical review with a summary of his consultancies).
    GW / KF

    Biographical history of technology > Preece, Sir William Henry

  • 10 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 11 Jablochkoff, Paul

    [br]
    b. 14 September 1847 Serdobsk, Russia
    d. April 1894 St Petersburg, Russia
    [br]
    Russian military engineer and inventor of an electric "candle", the invention of which gave an immense impetus to electric lighting in the 1870s.
    [br]
    Jablochkoff studied at the Military Engineering College in St Petersburg. Having a scientific bent, he was sent to the Military Galvano Technical School. At the end of his military service in 1871 he was appointed Director General of the Moscow-Kursk telegraph lines for the Midi Railway Company. At this time he began to develop an interest in electric lighting, and in 1875 he left the Imperial Telegraph Service to devote his time exclusively to scientific pursuits. He found employment at the workshop of M Bréguet in Paris, where Gramme dynamos and Serrin arc lamps were being constructed. After some experimentation he found a means of producing a carbon arc that regulated itself without any mechanism. This lamp, the Jablochkoff candle, with two carbon rods placed parallel to each other and so close that an arc formed at the ends, could continue to burn until the rods were consumed. Plaster of Paris was used to separate the two electrodes and crumbled away as the carbon burned, thus exposing fresh carbon. These lamps were used in May 1878 in Paris to illuminate the avenue de l'Opéra, and later in Rome and London, and in essence were the first practical electric street lighting. Since there was no regulating mechanism, several candles could be placed in a single circuit. Despite inherent defects, such as the inability to restart the lamps after they were extinguished by wind or interruption of supply, they remained in use for some purposes for several years on account of their simplicity and cheapness. In 1877 Jablochkoff obtained the earliest patent to employ transformers to distribute current in an alternating-current circuit.
    [br]
    Bibliography
    11 September 1876, British patent no. 3,552 (Jablochkoff's candle).
    22 May 1877, British patent no. 1,996 (transformer or induction coil distribution).
    Further Reading
    W.J.King, 1962, The Development of Electrical Technology in the 19th Century, Washington, DC: Smithsonian Institution, Paper 30, pp. 393–407 (a detailed account). W.E.Langdon, 1877, "On a new form of electric light", Journal of the Society of
    Telegraph Engineers 6:303–19 (an early report on Jablochkoffs system).
    Engineering (1878) 26:125–7.
    GW

    Biographical history of technology > Jablochkoff, Paul

  • 12 Bain, Alexander

    [br]
    b. October 1810 Watten, Scotland
    d. 2 January 1877 Kirkintilloch, Scotland
    [br]
    Scottish inventor and entrepreneur who laid the foundations of electrical horology and designed an electromagnetic means of transmitting images (facsimile).
    [br]
    Alexander Bain was born into a crofting family in a remote part of Scotland. He was apprenticed to a watchmaker in Wick and during that time he was strongly influenced by a lecture on "Heat, sound and electricity" that he heard in nearby Thurso. This lecture induced him to take up a position in Clerkenwell in London, working as a journeyman clockmaker, where he was able to further his knowledge of electricity by attending lectures at the Adelaide Gallery and the Polytechnic Institution. His thoughts naturally turned to the application of electricity to clockmaking, and despite a bitter dispute with Charles Wheatstone over priority he was granted the first British patent for an electric clock. This patent, taken out on 11 January 1841, described a mechanism for an electric clock, in which an oscillating component of the clock operated a mechanical switch that initiated an electromagnetic pulse to maintain the regular, periodic motion. This principle was used in his master clock, produced in 1845. On 12 December of the same year, he patented a means of using electricity to control the operation of steam railway engines via a steam-valve. His earliest patent was particularly far-sighted and anticipated most of the developments in electrical horology that occurred during the nineteenth century. He proposed the use of electricity not only to drive clocks but also to distribute time over a distance by correcting the hands of mechanical clocks, synchronizing pendulums and using slave dials (here he was anticipated by Steinheil). However, he was less successful in putting these ideas into practice, and his electric clocks proved to be unreliable. Early electric clocks had two weaknesses: the battery; and the switching mechanism that fed the current to the electromagnets. Bain's earth battery, patented in 1843, overcame the first defect by providing a reasonably constant current to drive his clocks, but unlike Hipp he failed to produce a reliable switch.
    The application of Bain's numerous patents for electric telegraphy was more successful, and he derived most of his income from these. They included a patent of 12 December 1843 for a form of fax machine, a chemical telegraph that could be used for the transmission of text and of images (facsimile). At the receiver, signals were passed through a moving band of paper impregnated with a solution of ammonium nitrate and potassium ferrocyanide. For text, Morse code signals were used, and because the system could respond to signals faster than those generated by hand, perforated paper tape was used to transmit the messages; in a trial between Paris and Lille, 282 words were transmitted in less than one minute. In 1865 the Abbé Caselli, a French engineer, introduced a commercial fax service between Paris and Lyons, based on Bain's device. Bain also used the idea of perforated tape to operate musical wind instruments automatically. Bain squandered a great deal of money on litigation, initially with Wheatstone and then with Morse in the USA. Although his inventions were acknowledged, Bain appears to have received no honours, but when towards the end of his life he fell upon hard times, influential persons in 1873 secured for him a Civil List Pension of £80 per annum and the Royal Society gave him £150.
    [br]
    Bibliography
    1841, British patent no. 8,783; 1843, British patent no. 9,745; 1845, British patent no.
    10,838; 1847, British patent no. 11,584; 1852, British patent no. 14,146 (all for electric clocks).
    1852, A Short History of the Electric Clocks with Explanation of Their Principles and
    Mechanism and Instruction for Their Management and Regulation, London; reprinted 1973, introd. W.Hackmann, London: Turner \& Devereux (as the title implies, this pamphlet was probably intended for the purchasers of his clocks).
    Further Reading
    The best account of Bain's life and work is in papers by C.A.Aked in Antiquarian Horology: "Electricity, magnetism and clocks" (1971) 7: 398–415; "Alexander Bain, the father of electrical horology" (1974) 9:51–63; "An early electric turret clock" (1975) 7:428–42. These papers were reprinted together (1976) in A Conspectus of Electrical Timekeeping, Monograph No. 12, Antiquarian Horological Society: Tilehurst.
    J.Finlaison, 1834, An Account of Some Remarkable Applications of the Electric Fluid to the Useful Arts by Alexander Bain, London (a contemporary account between Wheatstone and Bain over the invention of the electric clock).
    J.Munro, 1891, Heroes of the Telegraph, Religious Tract Society.
    J.Malster \& M.J.Bowden, 1976, "Facsimile. A Review", Radio \&Electronic Engineer 46:55.
    D.J.Weaver, 1982, Electrical Clocks and Watches, Newnes.
    T.Hunkin, 1993, "Just give me the fax", New Scientist (13 February):33–7 (provides details of Bain's and later fax devices).
    DV / KF

    Biographical history of technology > Bain, Alexander

  • 13 Wheatstone, Sir Charles

    SUBJECT AREA: Telecommunications
    [br]
    b. 1802 near Gloucester, England
    d. 19 October 1875 Paris, France
    [br]
    English physicist, pioneer of electric telegraphy.
    [br]
    Wheatstone's family moved to London when he was 4 years old. He was educated at various schools in London and excelled in physics and mathematics. He qualified for a French prize but forfeited it because he was too shy to recite a speech in French at the prize-giving.
    An uncle, also called Charles Wheatstone, has a musical instrument manufacturing business where young Charles went to work. He was fascinated by the science of music, but did not enjoy business life. After the uncle's death, Charles and his brother William took over the business. Charles developed and patented the concertina, which the firm assembled from parts made by "outworkers". He devoted much of his time to studying the physics of sound and mechanism of sound transmission through solids. He sent speech and music over considerable distances through solid rods and stretched wires, and envisaged communication at a distance. He concluded, however, that electrical methods were more promising.
    In 1834 Wheatstone was appointed Professor of Experimental Philosophy—a part-time posi-tion—in the new King's College, London, which gave him some research facilities. He conducted experiments with a telegraph system using several miles of wire in the college corridors. Jointly with William Fothergill Cooke, in 1837 he obtained the first patent for a practical electric telegraph, and much of the remainder of his life was devoted to its improvement. In 1843 he gave a paper to the Royal Society surveying the state of electrical measurements and drew attention to a bridge circuit known ever since as the "Wheatstone bridge", although he clearly attributed it to S.H.Christie. Wheatstone devised the "ABC" telegraph, for use on private lines by anyone who could read, and a high-speed automatic telegraph which was adopted by the Post Office and used for many years. He also worked on the French and Belgian telegraph systems; he died when taken ill on a business visit to Paris.
    [br]
    Further Reading
    B.Bowers, 1975, Sir Charles Wheatstone FRS, London: HMSO.
    BB

    Biographical history of technology > Wheatstone, Sir Charles

  • 14 Henry, Joseph

    [br]
    b. 17 December 1797 Albany, New York, USA
    d. 13 May 1878 Washington, DC, USA
    [br]
    American scientist after whom the unit of inductance is named.
    [br]
    Sent to stay with relatives at the age of 6 because of the illness of his father, when the latter died in 1811 Henry was apprenticed to a silversmith and then turned to the stage. Whilst he was ill himself, a book on science fired his interest and he began studying at Albany Academy, working as a tutor to finance his studies. Initially intending to pursue medicine, he then spent some time as a surveyor before becoming Professor of Mathematics and Natural Philosophy at Albany Academy in 1826. There he became interested in the improvement of electromagnets and discovered that the use of an increased number of turns of wire round the core greatly increased their power; by 1831 he was able to supply to Yale a magnet capable of lifting almost a ton weight. During this time he also discovered the principles of magnetic induction and self-inductance. In the same year he made, but did not patent, a cable telegraph system capable of working over a distance of 1 mile (1.6 km). It was at this time, too, that he found that adiabatic expansion of gases led to their sudden cooling, thus paving the way for the development of refrigerators. For this he was recommended for, but never received, the Copley Medal of the Royal Society. Five years later he became Professor of Natural Philosophy at New Jersey College (later Princeton University), where he deduced the laws governing the operation of transformers and observed that changes in magnetic flux induced electric currents in conductors. Later he also observed that spark discharges caused electrical effects at a distance. He therefore came close to the discovery of radio waves. In 1836 he was granted a year's leave of absence and travelled to Europe, where he was able to meet Michael Faraday. It was with his help that in 1844 Samuel Morse set up the first patented electric telegraph, but, sadly, the latter seems to have reaped all the credit and financial rewards. In 1846 he became the first secretary of the Washington Smithsonian Institute and did much to develop government support for scientific research. As a result of his efforts some 500 telegraph stations across the country were equipped with meteorological equipment to supply weather information by telegraph to a central location, a facility that eventually became the US National Weather Bureau. From 1852 he was a member of the Lighthouse Board, contributing to improvements in lighting and sound warning systems and becoming its chairman in 1871. During the Civil War he was a technical advisor to President Lincoln. He was a founder of the National Academy of Science and served as its President for eleven years.
    [br]
    Principal Honours and Distinctions
    President, American Association for the Advancement of Science 1849. President, National Academy of Science 1893–1904. In 1893, to honour his work on induction, the International Congress of Electricians adopted the henry as the unit of inductance.
    Bibliography
    1824. "On the chemical and mechanical effects of steam". 1825. "The production of cold by the rarefaction of air".
    1832, "On the production of currents \& sparks of electricity \& magnetism", American
    Journal of Science 22:403.
    "Theory of the so-called imponderables", Proceedings of the American Association for the Advancement of Science 6:84.
    Further Reading
    Smithsonian Institution, 1886, Joseph Henry, Scientific Writings, Washington DC.
    KF

    Biographical history of technology > Henry, Joseph

  • 15 Soemmerring, Samuel Thomas von

    SUBJECT AREA: Telecommunications
    [br]
    b. 28 January 1755 Torun, Poland (later Thorn, Prussia)
    d. 2 March 1830 Frankfurt, Germany
    [br]
    German physician who devised an early form of electric telegraph.
    [br]
    Soemmerring appears to have been a distinguished anatomist and physiologist who in 1805 became a member of the Munich Academy of Sciences. Whilst experimenting with electric currents in acid solutions in 1809, he observed the bubbles of gases produced by the dissociation process. Using this effect at the receiver, he devised a telegraph consisting of twenty-six parallel wires (one for each letter of the alphabet) and was able to transmit messages over a distance of 2 miles (3 km), but the idea was not commercially viable. In 1812, with the help of Schilling, he experimented with soluble indiarubber as a possible cable insulator.
    [br]
    Principal Honours and Distinctions
    Knight of the Order of St Anne of Russia 1818. Hon. Member of St Petersburg Imperial Academy of Sciences 1819. FRS 1827.
    Bibliography
    Soemmerring's "electrolytic" telegraph was described in a paper read before the Munich Academy of Sciences on 29 August 1809.
    Further Reading
    J.J.Fahie, 1884, A History of Electric Telegraphy to the Year 1837, London: E\&F Spon. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    KF

    Biographical history of technology > Soemmerring, Samuel Thomas von

  • 16 Bright, Sir Charles Tilston

    SUBJECT AREA: Telecommunications
    [br]
    b. 8 June 1832 Wanstead, Essex, England
    d. 3 May 1888 Abbey Wood, London, England
    [br]
    English telegraph engineer responsible for laying the first transatlantic cable.
    [br]
    At the age of 15 years Bright left the London Merchant Taylors' School to join the two-year-old Electric Telegraph Company. By 1851 he was in charge of the Birmingham telegraph station. After a short time as Assistant Engineer with the newly formed British Telegraph Company, he joined his brother (who was Manager) as Engineer-in-Chief of the English and Irish Magnetic Telegraph Company in Liverpool, for which he laid thousands of miles of underground cable and developed a number of innovations in telegraphy including a resistance box for locating cable faults and a two-tone bell system for signalling. In 1853 he was responsible for the first successful underwater cable between Scotland and Ireland. Three years later, with the American financier Cyrus Field and John Brett, he founded and was Engineer-in-chief of the Atlantic Telegraph Company, which aimed at laying a cable between Ireland and Newfoundland. After several unsuccessful attempts this was finally completed on 5 August 1858, Bright was knighted a month later, but the cable then failed! In 1860 Bright resigned from the Magnetic Telegraph Company to set up an independent consultancy with another engineer, Joseph Latimer Clark, with whom he invented an improved bituminous cable insulation. Two years later he supervised construction of a telegraph cable to India, and in 1865 a further attempt to lay an Atlantic cable using Brunel's new ship, the Great Eastern. This cable broke during laying, but in 1866 a new cable was at last successfully laid and the 1865 cable recovered and repaired. The year 1878 saw extension of the Atlantic cable system to the West Indies and the invention with his brother of a system of neighbourhood fire alarms and even an automatic fire alarm.
    In 1861 Bright presented a paper to the British Association for the Advancement of Science on the need for electrical standards, leading to the creation of an organization that still exists in the 1990s. From 1865 until 1868 he was Liberal MP for Greenwich, and he later assisted with preparations for the 1881 Paris Exhibition.
    [br]
    Principal Honours and Distinctions
    Knighted 1858. Légion d'honneur. First President, Société Internationale des Electriciens. President, Society of Telegraph Engineers \& Electricians (later the Institution of Electrical Engineers) 1887.
    Bibliography
    1852, British patent (resistance box).
    1855, British patent no. 2,103 (two-tone bell system). 1878, British patent no. 3,801 (area fire alarms).
    1878, British patent no. 596 (automatic fire alarm).
    "The physical \& electrical effects of pressure \& temperature on submarine cable cores", Journal of the Institution of Electrical Engineers XVII (describes some of his investigations of cable characteristics).
    Further Reading
    C.Bright, 1898, Submarine Cables, Their History, Construction \& Working.
    —1910, The Life Story of Sir Charles Tilston Bright, London: Constable \& Co.
    KF

    Biographical history of technology > Bright, Sir Charles Tilston

  • 17 Nyquist, Harry

    [br]
    b. 7 February 1889 Nilsby, Sweden
    d. 4 April 1976 Texas, USA
    [br]
    Swedish-American engineer who established the formula for thermal noise in electrical circuits and the stability criterion for feedback amplifiers.
    [br]
    Nyquist (original family name Nykvist) emigrated from Sweden to the USA when he was 18 years old and settled in Minnesota. After teaching for a time, he studied electrical engineering at the University of North Dakota, gaining his first and Master's degrees in 1915 and 1916, and his PhD from Yale in 1917. He then joined the American Telegraph \& Telephone Company, moving to its Bell Laboratories in 1934 and remaining there until his retirement in 1954. A prolific inventor, he made many contributions to communication engineering, including the invention of vestigial-side band transmission. In the late 1920s he analysed the behaviour of analogue and digital signals in communication circuits, and in 1928 he showed that the thermal noise per unit bandwidth is given by 4 kT, where k is Boltzmann's constant and T the absolute temperature. However, he is best known for the Nyquist Criterion, which defines the conditions necessary for the stable, oscillation-free operation of amplifiers with a closed feedback loop. The problem of how to realize these conditions was investigated by his colleague Hendrik Bode.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Medal 1960. Institute of Electrical and Electronics Engineers Medal of Honour 1960; Mervin J.Kelly Award 1961.
    Bibliography
    1924, "Certain factors affecting telegraph speed", Bell System Technical Journal 3:324. 1928, "Certain topics in telegraph transmission theory", Transactions of the American
    Institute of Electrical Engineers 47:617.
    1928, "Thermal agitation of electric charge in conductors", Physical Review 32:110. 1932, "Regeneration theory", Bell System Technical Journal 11:126.
    1940, with K.Pfleger, "Effect of the quadrature component in single-sideband transmission", Bell System Technical Journal 19:63.
    Further Reading
    Bell Telephone Laboratories, 1975, Mission Communications.
    KF

    Biographical history of technology > Nyquist, Harry

  • 18 Ayrton, William Edward

    [br]
    b. 14 September 1847 London, England
    d. 8 November 1908 London, England
    [br]
    English physicist, inventor and pioneer in technical education.
    [br]
    After graduating from University College, London, Ayrton became for a short time a pupil of Sir William Thomson in Glasgow. For five years he was employed in the Indian Telegraph Service, eventually as Superintendent, where he assisted in revolutionizing the system, devising methods of fault detection and elimination. In 1873 he was invited by the Japanese Government to assist as Professor of Physics and Telegraphy in founding the Imperial College of Engineering in Tokyo. There he created a teaching laboratory that served as a model for those he was later to organize in England and which were copied elsewhere. It was in Tokyo that his joint researches with Professor John Perry began, an association that continued after their return to England. In 1879 he became Professor of Technical Physics at the City and Guilds Institute in Finsbury, London, and later was appointed Professor of Physics at the Central Institution in South Kensington.
    The inventions of Avrton and Perrv included an electric tricycle in 1882, the first practicable portable ammeter and other electrical measuring instruments. By 1890, when the research partnership ended, they had published nearly seventy papers in their joint names, the emphasis being on a mathematical treatment of subjects including electric motor design, construction of electrical measuring instruments, thermodynamics and the economical use of electric conductors. Ayrton was then employed as a consulting engineer by government departments and acted as an expert witness in many important patent cases.
    [br]
    Principal Honours and Distinctions
    FRS 1881. President, Physical Society 1890–2. President, Institution of Electrical Engineers 1892. Royal Society Royal Medal 1901.
    Bibliography
    28 April 1883, British patent no. 2,156 (Ayrton and Perry's ammeter and voltmeter). 1887, Practical Electricity, London (based on his early laboratory courses; 7 edns followed during his lifetime).
    1892, "Electrotechnics", Journal of the Institution of Electrical Engineers 21, 5–36 (for a survey of technical education).
    Further Reading
    D.W.Jordan, 1985, "The cry for useless knowledge: education for a new Victorian technology", Proceedings of the Institution of Electrical Engineers, 132 (Part A): 587– 601.
    G.Gooday, 1991, History of Technology, 13: 73–111 (for an account of Ayrton and the teaching laboratory).
    GW

    Biographical history of technology > Ayrton, William Edward

  • 19 Renard, Charles

    SUBJECT AREA: Aerospace
    [br]
    b. 23 November 1847 Damblain, Vosges, France
    d. 13 April 1905 Chalais-Meudon, France
    [br]
    French pioneer of military aeronautics who, with A.C.Krebs, built an airship powered by an electric motor.
    [br]
    Charles Renard was a French army officer with an interest in aviation. In 1873 he constructed an unusual unmanned glider with ten wings and an automatic stabilizing device to control rolling. This operated by means of a pendulum device linked to moving control surfaces. The model was launched from a tower near Arras, but unfortunately it spiralled into the ground. The control surfaces could not cope with the basic instability of the design, but as an idea for automatic flight control it was ahead of its time.
    Following a Commission report on the military use of balloons, carrier pigeons and an optical telegraph, an aeronautical establishment was set up in 1877 at Chalais-Meudon, near Paris, under the direction of Charles Renard, who was assisted by his brother Paul. The following year Renard and a colleague, Arthur Krebs, began to plan an airship. They received financial help from Léon Gambetta, a prominent politician who had escaped from Paris by balloon in 1870 during the siege by the Prussians. Renard and Krebs studied earlier airship designs: they used the outside shape of Paul Haenlein's gas-engined airship of 1872 and included Meusnier's internal air-filled ballonnets. The gas-engine had not been a success so they decided on an electric motor. Renard developed lightweight pile batteries while Krebs designed a motor, although this was later replaced by a more powerful Gramme motor of 6.5 kW (9 hp). La France was constructed at Chalais-Meudon and, after a two-month wait for calm conditions, the airship finally ascended on 9 August 1884. The motor was switched on and the flight began. Renard and Krebs found their airship handled well and after twenty-three minutes they landed back at their base. La, France made several successful flights, but its speed of only 24 km/h (15 mph) meant that flights could be made only in calm weather. Parts of La, France, including the electric motor, are preserved in the Musée de l'Air in Paris.
    Renard remained in charge of the establishment at Chalais-Meudon until his death. Among other things, he developed the "Train Renard", a train of articulated road vehicles for military and civil use, of which a number were built between 1903 and 1911. Towards the end of his life Renard became interested in helicopters, and in 1904 he built a large twin-rotor model which, however, failed to take off.
    [br]
    Bibliography
    1886, Le Ballon dirigeable La France, Paris (a description of the airship).
    Further Reading
    Descriptions of Renard and Kreb's airship are given in most books on the history of lighter-than-air flight, e.g.
    L.T.C.Rolt, 1966, The Aeronauts, London; pub. in paperback 1985.
    C.Bailleux, c. 1988, Association pour l'Histoire de l'Electricité en France, (a detailed account of the conception and operations of La France).
    1977, Centenaire de la recherche aéronautique à Chalais-Meudon, Paris (an official memoir on the work of Chalais-Meudon with a chapter on Renard).
    JDS

    Biographical history of technology > Renard, Charles

  • 20 Clark, Edwin

    SUBJECT AREA: Civil engineering
    [br]
    b. 7 January 1814 Marlow, Buckinghamshire, England
    d. 22 October 1894 Marlow, Buckinghamshire, England
    [br]
    English civil engineer.
    [br]
    After a basic education in mathematics, latin, French and geometry, Clark was articled to a solicitor, but he left after two years because he did not like the work. He had no permanent training otherwise, and for four years he led an idle life, becoming self-taught in the subjects that interested him. He eventually became a teacher at his old school before entering Cambridge, although he returned home after two years without taking a degree. He then toured the European continent extensively, supporting himself as best he could. He returned to England in 1839 and obtained further teaching posts. With the railway boom in progress he decided to become a surveyor and did some work on a proposed line between Oxford and Brighton.
    After being promised an interview with Robert Stephenson, he managed to see him in March 1846. Stephenson took a liking to Clark and asked him to investigate the strains on the Britannia Bridge tubes under various given conditions. This work so gained Stephenson's full approval that, after being entrusted with experiments and designs, Clark was appointed Resident Engineer for the Britannia Bridge across the Menai Straits. He not only completed the bridge, which was opened on 19 October 1850, but also wrote the history of its construction. After the completion of the bridge—and again without any professional experience—he was appointed Engineer-in-Chief to the Electric and International Telegraph Company. He was consulted by Captain Mark Huish of the London \& North Western Railway on a telegraphic system for the railway, and in 1853 he introduced the Block Telegraph System.
    Clark was engaged on the Crystal Palace and was responsible for many railway bridges in Britain and abroad. He was Engineer and part constructor of the harbour at Callao, Peru, and also of harbour works at Colón, Panama. On canal works he was contractor for the marine canal, the Morskoy Canal, in 1875 between Kronstadt and St Petersburg. His great work on canals, however, was the concept with Edward Leader Williams of the hydraulically operated barge lift at Anderton, Cheshire, linking the Weaver Navigation to the Trent \& Mersey Canal, whose water levels have a vertical separation of 50 ft (15 m). This was opened on 26 July 1875. The structure so impressed the French engineers who were faced with a bottleneck of five locks on the Neuffossée Canal south of Saint-Omer that they commissioned Clark to design a lift there. This was completed in 1878 and survives as a historic monument. The design was also adopted for four lifts on the Canal du Centre at La Louvière in Belgium, but these were not completed until after Clark's death.
    JHB

    Biographical history of technology > Clark, Edwin

См. также в других словарях:

  • Electric telegraph — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

  • Electric telegraph — Telegraph Tel e*graph, n. [Gr. ? far, far off (cf. Lith. toli) + graph: cf. F. t[ e]l[ e]graphe. See {Graphic}.] An apparatus, or a process, for communicating intelligence rapidly between distant points, especially by means of preconcerted… …   The Collaborative International Dictionary of English

  • Electric Telegraph Company — was the world s first public telegraph company founded in the United Kingdom in 1846 by Sir William Fothergill Cooke and John Lewis Ricardo, MP for Stoke on Trent. C.F. Varley was chief engineer in the 1860s.It merged with the International… …   Wikipedia

  • electric telegraph — An apparatus or instrument used to transmit intelligence to a distant point with the aid of electricity. Western Union Tel Co. v Hill, 163 Ala 18, 50 So 248. electric wire. See electric line …   Ballentine's law dictionary

  • Telegraph — (vom Griechischen τῆλε, in die Ferne, u. γράφειν, schreiben), eine Vorrichtung od. Maschine zur schnellen Fortpflanzung von Nachrichten in größere Fernen. Das Bedürfniß Nachrichten in größere Fernen, als es durch die menschliche Sprache geschehen …   Pierer's Universal-Lexikon

  • Telegraph — (griech., »Fernschreiber«; hierzu die Tafeln »Telegraphenapparate I u. II« und die »Karte des Welttelegraphennetzes« bei S. 386), jede zur Nachrichtenbeförderung dienende Vorrichtung, durch die der an einem Orte (Senderort) zum sinnlichen… …   Meyers Großes Konversations-Lexikon

  • telegraph — telegrapher /teuh leg reuh feuhr/; esp. Brit., telegraphist, n. /tel i graf , grahf /, n. 1. an apparatus, system, or process for transmitting messages or signals to a distant place, esp. by means of an electric device consisting essentially of a …   Universalium

  • Electric — E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came from the… …   The Collaborative International Dictionary of English

  • Electric atmosphere — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

  • Electric aura — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

  • Electric cable — Electric E*lec tric ([ e]*l[e^]k tr[i^]k), Electrical E*lec tric*al ([ e]*l[e^]k tr[i^]*kal), a. [L. electrum amber, a mixed metal, Gr. h lektron; akin to hle ktwr the beaming sun, cf. Skr. arc to beam, shine: cf. F. [ e]lectrique. The name came… …   The Collaborative International Dictionary of English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»